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 APPENDIX A 
 
 
 PHYSICS OF METEOROLOGICAL RADARS 
 
A.1 Detection of Precipitation.  Consider a monostatic radar such as the WSR-88D with peak 
transmitted power, Pt, and antenna gain, G, illuminating a single target cross section, σb, at range, r. 
 
The incident power density, Pi, assuming no intervening losses, is: 
 
   Pi  =  Pt G / 4 π r2   
 
If the target does not absorb power and reradiates isotropically the return power, Pr, intercepted by 
the receiving antenna is: 
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Where Ae is the effective aperture area of the antenna.  From antenna theory, the effective area is 
related to the gain and wavelength, λ, by: 
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 incident power density  power density at receiving antenna 
   
In the case of precipitation, the radar illuminates a large number of targets (raindrops) at the same 
time (Figure A-1) and the average return power is: 
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The summation is over the volume from which power is received simultaneously.  This volume is 
proportional to the horizontal and vertical half-power beamwidths, θ3dB, φ3dB, and the radar sample 
volume depth, cτ/2, i.e.: 

     Gλ2 
       4π Ae = 
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Figure A-1 
Schematic for Radar Detection of a Distributed Target 

 
The volume illuminated by the radar subtends an equivalent angle of (π/8ln2)1/2 times the 
antenna one-way 3 dB beamwidth (upper inset) and has a depth equal to the equi-energy 
pulse width that is very close to half the power width for the WSR-88D. 
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If targets are uniformly distributed over the volume, the total back-scattering cross section can be 
expressed as: 
 
 
 
where η is the backscattering cross section per unit volume. 
 
The scattering volume angular dimension for circularly symmetric and Gaussian shape antenna 
patterns (Figure A-1, inset) is given by: 
 
   Equivalent Angle 
 

   ( )
2ln8

,
2

3 dB
ee

πθφθ =  

The sample volume depth is given by the depth of the equivalent rectangular pulse containing the 
same energy as the actual transmitter pulse (Figure A-1, inset) that, for the pulse shape used in the 
WSR-88D, is very close to the pulse half-power width. 
 
 A.1.1 Radar Cross Section of Raindrops.  The radar cross section of a spheroid exhibits 
the resonance property illustrated in Figure A-2.  For incident wavelengths, λ, large, compared to 
the radius, a, the cross section is given by Rayleigh’s law.  In the opposite case, for λ small 
compared to the radius, the cross section approaches the geometric cross section.  Between these 
limits are the resonance maxima or Mie region.  For the WSR-88D wavelength of 10 cm and liquid 
drops of diameter less than about 10 mm, the backscattering is well described by the Rayleigh law. 
However, large hail and graupel could have dimensions that carry the scattering over to the Mie 
region. 
 
In the case of Rayleigh scattering, the sphere becomes an electric dipole with a radar cross section 
that can be shown to be: 
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where ε is the dielectric constant.  For a water drop, | ε | >>1, the above reduces to: 
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For a conducting metal sphere with ε = ∞: 
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Figure A-2 
Radar Cross Section of a Metallic Sphere 

 
Radar cross section, σb, normalized to geometric cross section, πa2.  The straight line  
is the cross section predicted by the Rayleigh Law. 
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From the above, it is seen that σb is strongly dependent on the drop size (σb a6).  The 
backscattering cross section per unit volume, η, is thus dependent on drop size distribution, i.e., the 
number of drops of radius a, η(a).  Since η is the summation of individual cross sections: 
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The integral in the above expression is, under suitable restriction, proportional to the total volume 
liquid water per unit volume, which is the quantity of interest with meteorological radars. 
 
 A.1.2 Equivalent Radar Reflectivity Factor.  Total liquid water per unit volume is a 
more meaningful quantity to radar meteorologists than radar cross sections per unit volume and, by 
convention, radar meteorologists describe the meteorological target by the “equivalent radar 
reflectivity factor,” Ze, which is related to η by: 
 

eZK
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where | K |2 is the complex index of refraction (K = 0.93 for water and 0.2 for ice). 
 
For example, if all drops have diameter De and radar cross section σb, Ze reduces to: 
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where M is the mass liquid water content and ρ is the density of water. 
 
Ze is usually expressed in mm6 m-3 requiring a units conversion factor of 10-18 to be consistent with 
the units of η, which is area per unit volume in m-1 in the standard equation. 
 
 A.1.3 Meteorological Radar Equation.  Substituting the composite radar cross section: 
 

e
2

4

522

i
bi ZK

λ
π

8ln2
rπθ

2
c τ

ηVolσ •=•=∑  

 
into the general radar equation we have: 
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where: 
  
            rP  = average return power, watts 
 Pt = peak transmitted power, watts 
 G = antenna gain, dimensionless 
 λ = radar wavelength, meter 
 θ3dB = antenna half-power beamwidth, radian 
 τ = pulse duration, second 
 c = electromagnetic propagation constant ~ 3(108) m s-1 

 r = range to pulse volume, meter 
K = complex index of refraction; |K|2 is conventionally taken to be 0.93 for water and 

0.2 for ice. 
Ze = equivalent radar reflectivity factor, m3 (often expressed in mm6 m-3 for use in 

empirical rainfall rate equations such as Z = 200R1.6 with rate, R, in mm hr-1). 
L = loss factors associated with propagation and receiver detection. 

 
Typical detection capability of the WSR-88D is shown in Figure A-3.  The ability to provide a 
quantitative measurement is not so dependent on return absolute power as it is on the signal to 
noise ratio. 
 
 
A.2 Doppler Effect.  Consider again the radar signal return as a function of time, t, from a single 
target at range r.  At the receiver input this voltage, V, is given by: 
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where A is the composite signal amplitude, f is the radar frequency, ψ  is the initial phase and U is 
the gating function, U = 1, for 0<(t-2r/c)<τ, U = 0, otherwise. 
 
After the first mixer: 























 ∆−=

c
r

2 -t  Ut) f 2 exp(j 
r4

 j-expA  b  r)V(t, πψ
λ
π

 

 
where b is gain constant, the first exponential is the target modulation signal, and the second is the 
subcarrier. 
 
Doppler radars capable of velocity sign detection, such as the WSR-88D, typically generate the 
signal phasor by homodyning down to zero frequency carrier both the return signal and the return 
signal phase shifted by π/2.  The outputs are an Inphase, I, and Quadrature, Q, signal. 
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Figure A-3  

Reflectivity Detection Capability of the WSR-88D 
 

The equivalent reflectivity, Ze, rainfall rate relationship of Ze = 200R1.6 is a good general 
relationship, but is not optimum for all types of liquid precipitation and is not valid for snow. 
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If the range, r, changes with time (target moving relative to radar with a velocity, vr) the signal 
argument (phase) becomes a function of time. 
 
Time rate of phase change is the angular velocity ω.  Angular velocity is related to frequency, f, by 
ω = 2πf, thus: 

 

π2fv
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4π
dt
dr

λ
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where fd is the Doppler frequency and: 
 

λ
r2v

df =  

 
is the Doppler equation. 
 
The frequency shift of interest in meteorological radars corresponds to radial velocities of tens of 
meters per second down to a fraction of a meter per second, resulting in very small phase shift 
during the radar pulse period. 
 
For example, at λ =10 cm the phase shift during a typical pulse width: 
 
   τ  ~  1.4  (10 -6)  s 
 
for a radial velocity, vr, of 1 m s-1, is: 
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Such small phase shifts cannot be measured with existing techniques.  Consequently most radars 
are configured to measure phase shift from pulse to pulse (PRT ~ 10-3 s), which is a much larger 
angle; about 1 degree for the above example. 
 
However, this results in a sample data system subject to the Nyquist sampling criteria: 
 

2
ff s

n =  

 
where fn is the maximum unambiguous frequency (Nyquist frequency) and fs is the sampling 
frequency (radar pulse repetition frequency). 
 
Since the radar unambiguous range is also dictated by the pulse repetition frequency, there is a 
coupling between maximum unambiguous frequency, fn (or velocity, va), and unambiguous range, 
ra, given by: 
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and: 
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This relationship, shown in Figure A-4, is one of the more important constraints on pulse Doppler 
radar, and gives rise to the operational problems of range folding and velocity aliasing. 
 
 
A.3 Statistics of the Raindrop Array.  As previously noted, the weather echo is not produced by a 
single target but is made up of signals from a dense array of point scatterers and the instantaneous 
signal is a vector sum of amplitude and phase of weighted returns: 
 

   









∑=

λ

π ir4
jexp 

i iA r)V(t,  

 
Instantaneous echo sample power is proportional to the product of voltage and its complex 
conjugate: 
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Under constraints of long-term averaging, uniform distribution of targets, and random shuffling of 
targets within the radar sample volume, the second term tends to zero.  Return power can then be 
related to the sum of the scatterers, ∑

i
2

iA , and interactive effects of the raindrop array ignored. 
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Figure A-4 

Unambiguous Range-Velocity Relationship for the WSR-88D 
 

Dashed lines are for unambiguous velocities of 30, 25, and 20 ms-1 with associated 
unambiguous ranges of 134, 160, and 200 km. 
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An important statistical parameter can be inferred from the statistical independence of the 
individual signal contributions.  If the I, Q signals are composed of a large number of statistically 
independent contributions, the amplitude probability densities approach a Gaussian function by the 
Central Limit Theorem and (σ is standard deviation): 
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The probability of any function of these signals such as signal return power, Pr = AI + AQ, signal 
envelope amplitude, A = [AI + AQ]1/2, or the logarithm of the return power Log Pr = Log [AI + AQ] 
can then be derived by probability density transformation.  However, in WSR-88D signal 
processing, the return power estimates are made directly from averages of return power rather than 
indirectly from signal amplitude or log power; thus, the statistics of these functions of power are of 
little interest. 
 
Whereas the signal amplitude and power statistics describe the meteorological target backscattering 
cross section, the frequency or velocity statistics describe target motion, weighted by the target 
reflectivity.  The function of velocity, most easily interpreted in terms of the meteorology, is the 
power spectral density.  The spectral density used here is the velocity spectral density, i.e., the 
return power as a function of velocity (velocity being related to frequency by the Doppler 
equation).  Parameters of interest are the first moment about zero or mean velocity and first 
moment about the mean or spectrum width. 
 
The mean velocity thus represents a radar return, power-weighted mean of all scatterers in the 
“radar sample volume.”  Spectrum width is a measure of the dispersion of scatterer velocity about 
this mean. 
 
Spectrum width is a function of radar system characteristics such as beamwidth, pulse width, 
wavelength and antenna rotation rate, as well as meteorological parameters describing the velocity 
dispersion within the radar sample volume.  Some of the more significant contributions to velocity 
variance, σv

2, are: 
 

σv
2 = σd

2  + σr
2 + σs

2  + σt
2 
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Where: 
 
 σd

2 = variance due to drop size distribution 
 
 σr

2 = variance due to antenna motion 
 
 σs

2   = variance due to wind shear 
 σt

2 = variance due to turbulence 
 
If none of the mechanisms are dominant, we would expect the spectral density to be Gaussian by 
the Central Limit Theorem.  With rare but important exception (mesocyclone and tornadic vortex), 
this is the case. 
 
An estimate of the contribution due to individual effects can be made as follows: 
 
Drop Size Distribution 
 
 σd

2   = (σdo sin φe)2 

 
 σdo = standard deviation of drop terminal velocities (~ 1 m s-1) 
 
  φe = antenna elevation angle 
 
Antenna Rotation 
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where: 
 
 α  = antenna rotation rate, deg s-1 
  λ = wavelength, m 
 2θ  = two-way antenna 3 dB beamwidth, deg 
 ( 2θ  ~ 0.7 θ3dB for Gaussian beams) 
 
Wind Shear 
 
   σs

2 = σsθ
  2  + σ sφ

  2 + σsr
2  

 
for constant gradients, k, in azimuth, elevation, and range and a Gaussian antenna pattern 
 
   σsθ

  2  + σ sφ
  2 = (r σθ κθ )2 + (r σφ κθ )2 

 
   σsr

2 = [β kr (cτ/2)]2 
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where: 
 
1) κ is a shear constant (meters per second per meter) 
2) 2

sθ  is variance due to wind gradient in the azmuthal direction 

3) 2
sφ  is variance due to wind gradient in elevation 

4) 2
r s  is variance due to wind gradient in range 

 β ~ 0.29 for rectangular pulse and wideband receiver 
 
 β ~ 0.34 for rectangular pulse and matched receiver 
 
Turbulence – Median Values: 
 
    2m2s-2 < σt

2 < 16m2s-2 
 
   Stratiform rain     convective storms 
   snow 
 
 
Typical composite values are shown in Figure A-5 for: 
 
 λ = 10 cm 
 θ = 1º 
 α  = 18º s-1 
 κ = 4 (10-3) s-1 

 φ t
2 = 1.4 m s-1 

  
Note the range dependency of σv predicted if the shear is sustained over the radar sample volume at 
all ranges.  In practice, this is usually not found to be the case.  Small scale turbulence is the more 
significant contribution, especially in convective storms. 
 
 
A.4  Return Power, Velocity, and Spectrum Width Estimation.  The uncertainty associated with 
a single sample of return power, amplitude, or spectrum width is very large.  Consequently, the 
estimate consist of averages where the standard deviation is reduced to an acceptable value, 
typically 1 dBZe for return power and 1 m s-1 for the mean velocity and spectrum width. 
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Figure A-5 
Theoretical Spectrum Width Versus Range for the WSR-88D 

 
Spectrum width at an antenna speed of 3 rpm assuming a vertical wind shear of  
4(10-3) s-1 and a small turbulence of 1.4 ms-1. 
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 A.4.1 Estimation of Return Power (Ze).  Return power is estimated from the signal 
envelope by a combination of time (pulse to pulse) and range (adjacent sample volume) averaging. 
 
A mean estimate, X , by a linear average of N independent samples drawn from a population with 
variance σi

2: 
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However, if the samples are correlated, the variance of a Ns sample average becomes:  
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where R(mTs) is the correlation between samples and Ts is the sampling interval.  The mean 
estimate variance ratio for NI independent samples to Ns correlated samples is: 
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where: 
 

λ
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The correlation of the samples is related to the PRT and the velocity spectrum width by the 
following.  In general the spectral density functional form is Gaussian: 
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where σf is the frequency standard deviation. 
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The normalized autocorrelation is given by the inverse Fourier transform: 
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where σt is the time standard deviation. 
 
Parameters σf and σt are related to each other by: 
 

   
f

t 2π
1σ
σ

=  

 
and to the velocity spectrum by: 
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where σv is the standard deviation of the velocity spectrum, i.e.: 
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For a receiver having an output directly proportional to input power (square law receiver) used in 
the WSR-88D, the amplitude variance is twice the frequency prior to amplitude detection and the 
correlation becomes: 
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Estimate variance can also be reduced by averaging in range.  The averaging interval is chosen so 
as to preserve the small-scale features of the meteorology and range sample spacing is selected by 
consideration of signal redundancy from correlation by transmitter pulse and receiver band width, 
and reduction of noise variance at low signal to noise ratio. 
 
As the discrete average approaches a continuous integration, the number of independent samples in 
range approaches: 
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where m is the number of pulse depths averaged. 
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The overall estimate variance reduction factor is the product of the number of independent samples 
in range and the number of independent samples in time with the product usually being about fifty. 
 
 A.4.2 Estimation of Mean Velocity.  Mean velocity estimates in the WSR-88D system are 
made by a technique that circumvents the spectral density calculation and estimates the first 
moment of the spectral density from the argument of the complex covariance.  The technique is 
commonly referred to as “pulse-pair processing.” 
 
The rigor of this estimator lies in the Moment Theorem.  The moments of a random variable, w: 
 
   E (w n) = M n 
 
are related to the derivatives of its characteristic function, Φ , by: 
 

   n

nΦ
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In particular this implies that, since the complex covariance and the spectral density constitute a 
Fourier transform pair, the spectral density moments correspond to the complex covariance 
evaluated at zero lag. 
 
Expressing the covariance in polar form: 
 
   r(τ) = A(τ) exp[ j 2π δ(τ)] 
 
Where A(τ) is a real even function of τ and δ (τ) is a real odd function of: 
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A maximum likelihood unbiased estimator of r(τ): 
 

 
 
where: 
 
 Z = I + jQ 
 Z* = complex conjugate of Z 
 
forms the basis for an estimator of spectral density mean given by: 
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The restrictions imposed on A(t) and w(t) require the spectral to be unimodal and symmetric about 
its mean,  This is generally true for meteorological signals but there are important exceptions such 
as the mesocyclone and the tornadic vortex.  Performance of this estimator is shown in Figure A-6. 
 

A.4.3 Estimation of Spectrum Width.  Spectrum width estimates in the WSR-88D unit 
are also calculated in the time domain.  The estimate is by signal autocorrelation and the rigor is 
derived from the fact that signal correlation and spectral density constitute a Fourier Transform 
Pair.  The particular algorithm used, however, is valid only for weather signals having Gaussian 
spectra. 
 
Fundamentally, the width frequency estimate is the standard deviation of the input spectral density 
(assumed to be Gaussian) given by the autocorrelation of input signal, i.e.: 
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where τs is the sampling interval (PRT), S is the signal power estimate after removal of noise 
power from total power, and r(τs) is the complex covariance at lag τs. 
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Figure A-6 

Standard Deviation of the Mean Velocity Estimate 
 

This figure depicts the normalized standard deviation of the mean velocity estimate as a 
function of spectrum width for three unambiguous velocities and four levels of signal-to- 
noise ratio (SNR).  Note the ordinate value must be divided by N1/2, the square root of the 
number of samples in the estimate. 
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The algorithm used delivers the width velocity and uses intermediate terms of the covariance as 
well as logarithmic algebra to be expressed as 
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where: 
 va = Unambiguous velocity 
 Re = real part of R(τs) 
 Im = imaginary part of R(τs) 
 Pn = signal plus noise power 
 n = noise power 
 m = number of samples in the estimate 
 
The performance estimator is shown in Figure A-7. 
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Figure A-7 
Standard Deviation of the Spectrum Width Estimate 

 

This figure depicts the normalized standard deviation of the spectrum width estimate as a 
function of spectrum width for three unambiguous velocities and three levels of signal-to- 
noise ratio (SNR).  Note the ordinate value must be divided by N1/2, the square root of the 
number of samples in the estimate. 
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